Evento de muestreo

Eden Arthropod Azores Database

Versión 1.4 Publicado por Universidade dos Açores en 23 de noviembre de 2020 Universidade dos Açores
Fecha de publicación:
23 de noviembre de 2020
Publicado por:
Universidade dos Açores
Licencia:
CC-BY 4.0

Descargue la última versión de los datos como un Archivo Darwin Core (DwC-A) o los metadatos como EML o RTF:

Datos como un archivo DwC-A descargar 3.214 registros en Inglés (750 KB)  - Frecuencia de actualización: irregular
Metadatos como un archivo EML descargar en Inglés (26 KB)
Metadatos como un archivo RTF descargar en Inglés (21 KB)

Descripción

Purpose: This study aims to contribute to the current international directives concerning biodiversity, aiming to document and safeguard biological resources of the globe. We intend to present the most widely distributed and diverse taxa we recorded during the sampling program of the EDEN project (2008-2014), specifically all arthropod fauna, at all strata, within eight representative habitats of five islands (Santa Maria, São Miguel, Terceira, Flores and Pico). In the current report, we present the records in the following taxa; Araneae, Collembola, Coleoptera; Staphylinidae, Hymenopteran parasitoids and beneficial Coleoptera: Coccinellidae.

Registros

Los datos en este recurso de evento de muestreo han sido publicados como Archivo Darwin Core(DwC-A), el cual es un formato estándar para compartir datos de biodiversidad como un conjunto de una o más tablas de datos. La tabla de datos del core contiene 3.214 registros.

también existen 1 tablas de datos de extensiones. Un registro en una extensión provee información adicional sobre un registro en el core. El número de registros en cada tabla de datos de la extensión se ilustra a continuación.

Event (core)
3214
Occurrence 
19772

Este IPT archiva los datos y, por lo tanto, sirve como repositorio de datos. Los datos y los metadatos del recurso están disponibles para su descarga en la sección descargas. La tabla versiones enumera otras versiones del recurso que se han puesto a disposición del público y permite seguir los cambios realizados en el recurso a lo largo del tiempo.

Versiones

La siguiente tabla muestra sólo las versiones publicadas del recurso que son de acceso público.

¿Cómo referenciar?

Por favor, tenga en cuenta que ésta es una versión antigua del conjunto de datos.  Los usuarios deben citar este trabajo de la siguiente manera:

Marcelino J, Borges P, Borges I, Soares A (2020): Eden Arthropod Azores Database. v1.4. Universidade dos Açores. Dataset/Samplingevent. http://ipt.gbif.pt/ipt/resource?r=eden_arthropod_database_azores&v=1.4

Derechos

Los usuarios deben respetar los siguientes derechos de uso:

El publicador y propietario de los derechos de este trabajo es Universidade dos Açores. Esta obra está bajo una licencia Creative Commons de Atribución/Reconocimiento (CC-BY 4.0).

Registro GBIF

Este recurso ha sido registrado en GBIF con el siguiente UUID: 5cc85d78-4313-4959-b17d-cd3dc32cc155.  Universidade dos Açores publica este recurso y está registrado en GBIF como un publicador de datos avalado por GBIF Portugal.

Palabras clave

Occurrence; Arthropoda; Azores; São Miguel; Terceira; Flores; Santa Maria; Pico; Island; anthropogenic impact gradient; habitat types

Contactos

José Marcelino
  • Originador
  • Punto De Contacto
Researcher
Universidade dos Açores; ce3c - Centre for Ecology, Evolution and Environmental
Rua Madre de Deus
9500-321 Ponta Delgada
Azores
PT
Paulo Borges
  • Proveedor De Los Metadatos
  • Publicador
Assistant Professor
Universidade dos Açores; ce3c - Centre for Ecology, Evolution and Environmental
Rua Capitão João d´Ávila, Pico da Urze
9700-042 Angra Do Heroismo
Azores
PT
+351968933212
Isabel Borges
  • Originador
Researcher
Universidade dos Açores
Rua da Mãe de Deus
9500-321 Ponta Delgada
Azores
PT
António Soares
  • Originador
Auxiliary Professor
Universidade dos Açores; ce3c - Centre for Ecology, Evolution and Environmental
Rua da Mãe de Deus
9500-321 Ponta Delgada
Azores
PT
Paulo Borges
  • Proveedor De Los Metadatos
  • Publicador
Aggregate Professor
Universidade dos Açores; ce3c - Centre for Ecology, Evolution and Environmental
Rua Capitão João d´Ávila, Pico da Urze
9700-042 Angra Do Heroismo
Azores
PT
+351968933212

Cobertura geográfica

Azores (Portugl). Islands of Santa Maria, São Miguel, Terceira, Flores, Pico and Flores

Coordenadas límite Latitud Mínima Longitud Mínima [36,906, -31,311], Latitud Máxima Longitud Máxima [39,589, -24,961]

Cobertura taxonómica

Araneae, Collembola, Insecta

Class Insecta (Insects)
Orden Araneae (Spiders), Collembola (Springtails)

Cobertura temporal

Fecha Inicial / Fecha Final 2009-07-20 / 2009-08-23

Datos del proyecto

Drivers of species composition, such as anthropogenic disturbance, can significantly alter the distribution of native and introduced species. In this contribution we report biodiversity and arthropod species distribution of five islands of the Azores, under increasing anthropogenic impacted habitats. Habitat surveys included five herbaceous and four arboreal habitat types, scaling up from native to anthropogenic managed habitats. We aimed to contribute to the ongoing effort to document the terrestrial biodiversity of Portugal and given that, archipelagoes hold a significant portion of Portuguese terrestrial biodiversity. Selection of Arthropoda groups for the current report were based on their known richness and abundance in almost all terrestrial ecosystems (Arachnida, Collembola, Hemiptera, Neuroptera, Coleoptera, Hymenoptera), as well as their importance in current Integrated Pest Management and alternative Biocontrol protocols, at large (i.e., Hymenopteran parasitoids and beneficial Coleoptera). In addition, we include the list of Dermaptera, Orthoptera, Psocoptera and Thysanoptera species. These assembled groups represent part of the monitoring program EDEN Azores (2008-2014), where all Arthropod fauna, at all strata, within eight representative habitats of five islands of the Azores (Santa Maria. São Miguel, Terceira, Flores and Pico) was recorded

Título Species inventory of Arthropoda across anthropogenic impacted habitats in the Azores archipelago
Identificador EDEN
Fuentes de Financiación This study was finance by FLAD – Fundação Luso-Americana para o Desenvolvimento and by the Direção Regional Ciencia, Tecnologia e Comércio (DRCTC) & PROEMPREGO, of the Azores This study was financed by FEDER in 85% and by Azorean Public funds by 15% through Operational Program Azores 2020, under the following projects AZORESBIOPORTAL –PORBIOTA (ACORES-01-0145-FEDER-000072), and under the project ECO2-TUTA (ACORES-01-0145-FEDER-000081).
Descripción del área de estudio We selected the islands based on the relative proportion of land used in agriculture and pristine areas (based on published data by Costa et al. 2014), taking in consideration all possible combinations, i.e., São Miguel (SMG), with a high proportion of land allocated to pastures (61%) and a low/medium proportion of scattered native habitats (19.1%); (ii) Terceira (TER), with high proportion of land of pastures (66.9%) and a medium/high proportion of localized native habitats (21.3%); (iii) Pico (PIC), with high proportion of pastureland (50.3%) and medium/high proportion of centrally localized high altitude native habitats (35.5%); (iv) Flores (FLO), with scarce agricultural development (17.7%) and a high proportion of localized native habitats (43%); and, (v) Santa Maria /SMR), with high proportion of agricultural land (56.7%), not presently used, and a low proportion of localized native habitats (17.3%). The importance of incorporating ecological gradients, such as an anthropogenic impact gradient, in biodiversity and conservation projects, has been previously assessed. They constitute a valuable parameter to infer possible causes for the distribution of species across the landscape (Ulrich et al. 2009). We therefore selected habitats that represented a gradient of increasing anthropogenic impact and management intensity. Nine habitat types divided between herbaceous and arborescent habitats were selected to represent a comprehensive range of the flora and fauna communities. These habitats were previously statistically validated (see Marcelino et al 2013, 2014). The herbaceous habitat gradient (Table 1) ranged from pristine meadows (MED) to corn fields (COR). The arborescent habitat gradient (Table 1) ranged from natural pristine forests of Laurus azorica (NAT) to orchards of Citrus sp. (ORC). Pristine meadows were not present on Santa Maria, and semi natural pastures at low altitude (SNPL) were used as a surrogate for MED on this island.
Descripción del diseño In order to obtain the maximum information on arthropod biodiversity, all strata present at a given habitat type were sampled, i.e., micro epigean fauna (Berlese-Tullgren trapping), soil fauna (Pitfall trapping), aerial vagility fauna (Vaccum aspirator) and canopy fauna (sweeping nets). Two parallel transects with fifteen pitfall traps (PF) were placed in 150x150 m geo-referenced plots. PF consisted of plastic cylinder cups 78 mm deep and 42 mm diameter filled with ca. 80 ml of a mixture of 96% alcohol and 0.05% liquid detergent. PF were buried in the soil so that the lip was flush with the surface and covered with a plastic plate at ca. 3 cm high, to avoid desiccation, flooding or insectivore predation. Traps remained in the soil for 7 days prior to collection. For each habitat type, and island, two replicate sites were monitored (with a minimum distance of 5 km apart), for a total of 80 sampling sites (i.e., 2 sites x 8 habitat types per island x 5 islands) each with one transects of 15 PF. Suction (SU) and sweeping (SW) sampling followed the parallel transects previously referred for the pitfall traps (PF) and were performed concomitantly with the latter. SU and SW were done to record species at strata other than the epigeic stratum. SU was made with a handheld aspirator (Stihl BG55), collecting the arthropods in shrubs, when available. SU was made individually for ca. 8 seconds, at each of 4 quadrant of the shrub or agro-culture plant. The specimens were transferred to a single cup. SW was made using a 1.5 m plastic stick to gently beat, twice, a primary branch at each quadrant of a given tree and using as a collecting device a 64 cm diameter sweeping net. The four samples per quadrant at a given sampling plant were then transferred to a single collecting cup. Berlese-Tullgreen sampling (BT) was made by collecting ca. 100 grams soil litter per sampling unit (15 samples for each transect established at PF sampling, above described). Samples were then stored in a cooler to avoid proliferation of saprophytic fungi and sent to the Department of Biology, University of the Azores, Ponta Delgada. BT trap units consisted of two plastic darkened containers, assembled together to provide an upper vented area (14 cm diameter x 11.5 cm high) with 4 openings (1 cm diameter covered with a 0.3 x 0.3 mm diameter mesh), and coupled with a 15 W lamp on top. Thea lower collecting area (13 cm diameter x 10 cm high) and partially filled with ca. 80 ml of the same mixture used in PF. Litter samples were placed on a 1.8 x 1.8 mm mesh, attached to a plastic funnel positioned in the assembling zone between the two halves of the device. In order to avoid heat and dryness, Collembola crawl downward the littler sample and drop through the funnel into the collecting mixture. Litter samples remained for 72 h in BT before processing at laboratory facilities. One island per week was sampled during the summer 2009 (July-August). This eliminated seasonal stochastic effects. The total number of samples was 4800 [80 sampling sites x 4 different types of traps x 15 samples per site]. The samples were processed in laboratory facilities and assigned to morphospecies groups, progressing to higher taxonomic degrees of identifications. Species richness and abundance were recorded. Species accumulation curves were performed for inventory completeness using EstimateS (Colwell, 2011). Inventory completeness was 70-75% for Staphylinidae and Collembola (Marcelino et al 2011, Marcelino et al 2016), reaching 80% for Araneae and Hymenoptera parasitoids (data not published).

Personas asociadas al proyecto:

José Marcelino
  • Autor
Paulo Borges
  • Autor
Isabel Borges
  • Autor

Métodos de muestreo

In order to obtain the maximum information on arthropod biodiversity, all strata present at a given habitat type were sampled, i.e., micro epigean fauna (Berlese-Tullgren trapping), soil fauna (Pitfall trapping), aerial vagility fauna (Vaccum aspirator) and canopy fauna (sweeping nets). Two parallel transects with fifteen pitfall traps (PF) were placed in 150x150 m geo-referenced plots. PF consisted of plastic cylinder cups 78 mm deep and 42 mm diameter filled with ca. 80 ml of a mixture of 96% alcohol and 0.05% liquid detergent. PF were buried in the soil so that the lip was flush with the surface and covered with a plastic plate at ca. 3 cm high, to avoid desiccation, flooding or insectivore predation. Traps remained in the soil for 7 days prior to collection. For each habitat type, and island, two replicate sites were monitored (with a minimum distance of 5 km apart), for a total of 80 sampling sites (i.e., 2 sites x 8 habitat types per island x 5 islands) each with one transects of 15 PF. Suction (SU) and sweeping (SW) sampling followed the parallel transects previously referred for the pitfall traps (PF) and were performed concomitantly with the latter. SU and SW were done to record species at strata other than the epigeic stratum. SU was made with a handheld aspirator (Stihl BG55), collecting the arthropods in shrubs, when available. SU was made individually for ca. 8 seconds, at each of 4 quadrant of the shrub or agro-culture plant. The specimens were transferred to a single cup. SW was made using a 1.5 m plastic stick to gently beat, twice, a primary branch at each quadrant of a given tree and using as a collecting device a 64 cm diameter sweeping net. The four samples per quadrant at a given sampling plant were then transferred to a single collecting cup. Berlese-Tullgreen sampling (BT) was made by collecting ca. 100 grams soil litter per sampling unit (15 samples for each transect established at PF sampling, above described). Samples were then stored in a cooler to avoid proliferation of saprophytic fungi and sent to the Department of Biology, University of the Azores, Ponta Delgada. BT trap units consisted of two plastic darkened containers, assembled together to provide an upper vented area (14 cm diameter x 11.5 cm high) with 4 openings (1 cm diameter covered with a 0.3 x 0.3 mm diameter mesh), and coupled with a 15 W lamp on top. Thea lower collecting area (13 cm diameter x 10 cm high) and partially filled with ca. 80 ml of the same mixture used in PF. Litter samples were placed on a 1.8 x 1.8 mm mesh, attached to a plastic funnel positioned in the assembling zone between the two halves of the device. In order to avoid heat and dryness, Collembola crawl downward the littler sample and drop through the funnel into the collecting mixture. Litter samples remained for 72 h in BT before processing at laboratory facilities. One island per week was sampled during the summer 2009 (July-August). This eliminated seasonal stochastic effects. The total number of samples was 4800 [80 sampling sites x 4 different types of traps x 15 samples per site]. The samples were processed in laboratory facilities and assigned to morphospecies groups, progressing to higher taxonomic degrees of identifications. Species richness and abundance were recorded. Species accumulation curves were performed for inventory completeness using EstimateS (Colwell, 2011). Inventory completeness was 70-75% for Staphylinidae and Collembola (Marcelino et al 2011, Marcelino et al 2016), reaching 80% for Araneae and Hymenoptera parasitoids (data not published).

Área de Estudio We selected the islands based on the relative proportion of land used in agriculture and pristine areas (based on published data by Costa et al. 2014), taking in consideration all possible combinations, i.e., São Miguel (SMG), with a high proportion of land allocated to pastures (61%) and a low/medium proportion of scattered native habitats (19.1%); (ii) Terceira (TER), with high proportion of land of pastures (66.9%) and a medium/high proportion of localized native habitats (21.3%); (iii) Pico (PIC), with high proportion of pastureland (50.3%) and medium/high proportion of centrally localized high altitude native habitats (35.5%); (iv) Flores (FLO), with scarce agricultural development (17.7%) and a high proportion of localized native habitats (43%); and, (v) Santa Maria /SMR), with high proportion of agricultural land (56.7%), not presently used, and a low proportion of localized native habitats (17.3%).
Control de Calidad Identifications were conducted in a progressive higher degree of taxonomy resolution, i.e., 1) morphospecies were generated and, concomitantly, an ongoing web-based image gallery stock was created (at www.eden-azores.webs.com). This secured consistency assigning specimens to morpho-species without duplications; 2) voucher specimens of morpho-species were sent to Dr. Paulo A. V. Borges to determine genus and species, when possible; 3) species of Collembola and Staphylinidae were genetically profiled to match genetic & morphological ID’s; 4) All voucher specimens where sent to reference taxonomists in the respective Order, family, genus or group (taxonomists listed in the Personnel section of this report), which corroborated identifications from steps 1, 2 and 3.

Descripción de la metodología paso a paso:

  1. See above details in Sampling description

Datos de la colección

Nombre de la Colección EDEN -Database
Identificador de la Colección EDEN
Métodos de preservación de los ejemplares Alcohol

Metadatos adicionales

Identificadores alternativos 5cc85d78-4313-4959-b17d-cd3dc32cc155
http://ipt.gbif.pt/ipt/resource?r=eden_arthropod_database_azores